Hyperplane Equation
$$
\mathbf{w}\cdot\mathbf{x} + w_0
\; = \; \mathbf{w}^\top \mathbf{x} + w_0
\; = \; \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix}^\top \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} + w_0
\; = \; w_1 x_1 + w_2 x_2 + \cdots + w_0
\; = \; w_0 + \sum_{d = 1}^{D} w_d x_d
\; = 0
$$
Any point $\mathbf{x} \in \mathbb{R}^D$ that lies on a ($D-1$) dimensional hyperplane characterised by the normal ($\mathbf{w}$) satisfies $\mathbf{w}^\top \mathbf{x} + w_0 = 0$.
Divides the $D$-dimensional feature space into two regions (half-spaces).